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Abstract--A method for predicting the transient responses to arbitrary inlet temperature changes of 
multipass shell-and-tube heat exchangers with arbitrary number of tubeside passes is developed. The 
tubeside as well as shellside surface areas and heat transfer c~ffic~ents are allowed to be different from 
pass to pass. The thermal capacities of both fluids and the wall are included. Both possible flow arrangements 
are considered. The inlet temperature changes may take place on either side or simultaneously on both 
sides. Generally, the optimum value of M of the summed series terms for the numerical inverse Lapiace 

transform falls in the range 8 < M C 20. 

THE TRANSIENT operation of heat eX&MgerS is of 
increasing interest in industry and research, either for 
process control applications or for the determination 
of average heat transfer coefficients in heat exchan- 
gers, There exist many references on the dynamic 
response of she&and-tube heat exchangers. Most of 
them, however, focus oh the transient behaviour of 
parallel flow or counter~ow heat exchangers. In other 
words, one can find few research papers which deal 
with the dynamic process of shell-and-tube heat exch- 
angers with more than one tubeside pass, although 
such apparatuses are extensively used in industry. 
Roppo and Ganic It] as well as Correa and ~archetti 
[Z] applied the cell model to describe dynamic 
responses to a step inlet change of multipass shell- 
and-tube heat exchangers. The first paper neglects the 
in~~ence of the thermal capacity of the core wall and 
the latter considers this influence, introducing an equi- 
valent tubeside specific heat capacity. The essence of 
both papers is the application of the finite difference 
method. 

On the basis of the previous work [3], this paper 
analyses the transient behaviour of shell-and-tube 
heat exchangers with N tubeside passes (designated as 
1 - N> and two different tubeside flow a~an~men~. It 
is allowed that the tubeside and shellside heat transfer 
coefficients as well as surface areas vary from pass to 
pass and that arbitrary inlet temperature changes 
(with the exception of discontinuities and rapid oscil- 
lations) occur on either side or simultaneously on both 
sides. 

---- ..I ..__ ___*____i 
‘!’ Dedicated to Professor Dr.-Ing. Dr.4ng.e.h. Ulrich 

Grigull. 

~~VELOPM~~T OF THE GOVERNING 

EQUATIONS 

The shell-and-tube heat exchanger under con- 
sideration is illustrated schematically in Fig. 1 where 
the number N of tubeside passes is arbitrary (even or 
odd) and two possible tubeside flow arrangements are 
presented. To simplify the derivation of the governing 
equations, the following assumptions are necessary : 

1. The thermal flow rates @‘f and l@z of the fluids 
are constant throughout and the heat transfer 
coefficient is constant within any tubeside pass, but it 
may vary with the tubeside pass. 

2. The shellside fluid is completely mixed at any 
cross-section of its nominal flow path and no bypass- 
ing occurs. 

3. All thermal properties are constant. 
4. Longitudinal heat conduction within the wall 

is neglected and the wall heat transfer resistance is 
negligible compared with convective heat transfer 
resistances. 

5. No heat is transferred from the shell of the ex- 
changer to the environment and there exists no in- 
fluence of the thermal capacity of the shell on the 
transient process, 

To develop a general coordinate system, the origin 
of the coordinate is always set at the location where 
the shellside fluid enters the heat exchanger. Accord- 
ing to the above idealizations, one can derive the 
(ZN+ 1) partial differential equations which describe 
the transient behaviour of 1 -N shell-and-tube heat 
exchangers 
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NOMENCLATURE 

A he3t transfer surface area [m’] Greek symbols 

c heat capacity [J K ‘1 X parameter in equation (I I) 

f; C--f? f:C) inlet tem~~cr~~ture changes ?I te~npe~~ture [K] 

F,(s), F,(s) transformed forms of .f’!(z) and i),, initial temperature in heat exchangers [K] 

j:(z) in the image domain 0, reference temperature [K] 

12 heat transfer coefficient [W rn- ’ K ‘] i. cipenvalues 

I distance from the entrance of shellsidc T time [s] 

fluid [m] z, residence time of fluid in the heat 

L length of the heat exchanger [m] exchanger [s]. 

A4 number of summed series terms in 
equation (21) 

IV number of tubeside passes Subscripts 
NTU number of transfer units [dimensionless] 1 shellside fluid 

s parameter of the Laplace transform 2 tubeside fluid 

1 dimensionless temperature, e exit 

I = (II-O,,)!‘(O,-0”) \v core wall of the heat exchanger. 

T transformed form of I in the Laplace 
transform domain 

IQ thermal flow rate [W K ‘] Silpers~rip~s 

.Y dirn~ns~o~ll~ss coordinate. .Y = I,‘L inlet 

dimensionless time 
I, exit. 

..- -_ 

+ 
WZ i=l 

i=2 
9, c = 3 

( : 

1 

__-+------ 
I L__-L-- 

%. G f N *,, 0: +N 
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r_--~------ 
I _-_---_ 

WZ i=N 

e; 

t--x 1,. 6 + N 
even 
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i-2 
/ = 

1 
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odd 

WZ 

d; 

(b) tubeside flow arrangement H 

FIG. I. Schematic representation of multipass shell-and-tube heat exchangers. 
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-(hA),i(t,i-t,i) = 0 (i = 1,2,. . . f N) (3) 

where the positive sign (+) and negative sign (-) of 
(&) in equation (2) are valid for the tubeside flow 
arrangements I and II which are shown in Fig. 1, 
respectively. For an incompressible fluid, it must be 
satisfied that I&,, = I@,, i.e., the tubeside thermal flow 
rate does not vary with the pass. However, the tube- 
side thermal capacity CZi may be different from pass 
to pass. The residence times r,, and rr2 of both fluids 
and some dimensionless parameters are introduced 

NTLI, = 
1 1 1 

-I 1 
(hn)+oz 

u, U,R, 
ci/, I= 

u, -t U,& 

i- , i= 1 

C2 = i CZi and C W 
t= I 

= >ir CW,. 

Obviously, we have the following relationships : 

Other dimensionless parameters are defined as 

The dimensionless time variable z is introduced as 

r 
z=-. 

r,1 
(5) 

By means of the above dimensionless variable and 
parameters, equations (I)-(3) can be rewritten as fol- 
lows : 

at, at, N’ 
z + z 4” c Udt, -LJ = 0 

i= I 
(6) 

(i = 1,2,. . . , N) (7) 

Rwi$ -a,i(t, -tt,i)-xazi(t,i-t,,) = 0 

(i= 1,2 ,..., N). (8) 

These dimensionless partial differential equations are 
subject to the following initial conditions : 

t, (TX, 0) = 0, t&c, 0) = &&, 0) = 0 

(i = 1,2,. .) N). (9) 

The shellside arbitrary inlet temperature change can 
be described as 

t,(O,z) = f,(z) (10) 

and the other N boundary and interface conditions 
pertinent to the tubeside flow are listed in Table 1. 
They vary with the number of tubeside passes and 
flow arrangements. 

Functions~,(z) andfi(z) describe any possible inlet 
temperature changes on both sides of multipass shell- 
and-tube heat exchangers, which may occur sep- 
arately or simultaneously. The most common forms 
of such changes may assume step, ramp, exponential 
or periodic expressions 

Table 1. The boundary and interface conditions for t&c, z) 

x=0, z>O 
Tubeside Row arrangement 

x= I, 220 I II 

N even 52 = f2i+ 1 = tx.i+ , f2i = fz,+ I = b.>+ / 
i= 2,4,...,N-2 

h@, -7) = h(z) t2 do, z) = fz(z) 
i= 1,3,..., N-l 

N odd taj = t A+ I = tlhi+ I tzi = t2it 8 = txi+ 1 t,dl. 4 = .f&) 
i=2,4,...,N-1 

t21@* zl = f&3 
i= I,3 ,...,N-2 
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1 1 step 

j‘,(z) or f2(z_) = x= ramp 

exp (-X) exponential 
sin (x) periodic 

(11) 

where I is a known parameter. 

TRANSIENT RESPONSES 

To obtain the transient responses to the given inlet 
temperature changes. the solution to equations (6)- 
(8) must be derived. For this purpose. one can take 
advantage of the Laplace transform of these equations 
using s as the Laplace parameter with respect to z. 
According to the given initial conditions, the trans- 
formed equations are as follows : 

d T’! L”+,% ,, 

d.\- 
~-- T, 

= s’gn R ,,,. P+a,,+X,, 

+ sign 

(i= I,?,....N) (13) 

x,,T, f%,T,, 
T,,, = ~- ~-~- 

R,,s+cr,,+?,, 
(i= I.? ,.... IV). (14) 

With the corresponding interface and boundary con- 

ditions. equations (12) and (13) compose a closed 
system consisting of (N+ 1) homogeneous ordinary 
differential equations of the first order. In matrix 

notation. this homogeneous system can be expressed 
in the form 

dT 
~~ = AT 
d.\r 

(15) 

where T = (7’?,, Tzz ,..,. T?.,.T,)’ and A is an 

(N+ 1) x (N-t I) matrix, the elements of which are as 

follows : 

c.,i:,,r,, 

In the light of the similar procedure described in ref. 

[4), a general solution to the system (15) is derived as 
\&I 

T = c d,B, exp (i,.\-1 (16) 

where i, and B, ( j = I. 2. . :‘I’+ I) al-e distinct cigcn- 

values and the corresponding eigcnvectors. rcspcc- 
tively, B, = (h,,,h?,. ./I,, + ,.,)I. Generally. the 
eigenvalucs are different from each other. If there exist 
multiple cigenvalues. the solution (16) may fail. rn 
this case one should refer to the literature [4]. To 
obtain the particular solution subject to the given 
interface and boundary conditions. (;\r+ I) unknown 
coefficients d, (,i = I, 2,. A+ I) must be detcr- 
mined. From equation (I 6) and the given conditions. 
one can find a matrix equation which confines thcsc 
coefficients 

WD=G (17) 

where D = (d,. dz, . d,, + ,) ’ and G = (0. 0. 0. 
F,(s), F,(s))~. if the inlet boundary conditions on both 
sides are taken as the last two equations. W is an 
()V+ I) x (N-t I) matrix whose clcments depend on 
many factors such as the number of tubeside passes. 
the tubeside flow arrangement and the multiplicity 01’ 
cigenvalues i.,. Consequently. the coefficient vector D 

is obtained 

D=W ‘G. (IX) 

On determining the coefficients L/, in equation (16). 
one has found the particular solution subject to the 
given conditions in the image domain of the Laplacc 
transform. In this domain. the exit transient response 
T,, of the shellside flow is drawn from equation ( f 6) 

\+i 
T,, = C ~l,h\. , ,., exp (;.,I 

I~ I 

and the tubesidc exit response r,, varies with the 
tubeside flow arrangement and the number N of tube- 
side passes. For the tubeside flow arrangement I 

For the tubeside flow arrangement II .\- I 

c d,ll,., even h 
Tzc = T2,y /- 1 (2Ob) 

Lt I 
1 ~1, h-V, exp (i,) odd N. 

Obviously. cl,, B, and i,, may all be functions of the 
Laplace parameter S. It is impossible to perform the 
inverse transform of the above mentioned expressions 
analytically. A numerical inverse Laplace transform 
is used to derive the transient responses to the inlet 
temperature changes in the time domain. This numeri- 
cal inversion method, called the Gaver-Stehfest 
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algorithm [S], can be described by the following 
expressions : 

ky2k)! 
x (M/2-k)!k!(k-I)!(&k)!(2k-i)! (21) 

where M must be even. The word ‘min’ means that 
the number of summed series terms takes the lower of 
i and M/2. 

By means of the expression (21), one can obtain the 
transient temperature profiles of both fluids and of 
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FIG. 2. Exit responses to a shellside step inlet temperature 
change of 1-2 heat exchanger with tubeside flow arrangement 
I (E,, = El2 = 0.5, &2, = &** = 0.5, E,, = &,Z = 0.5, E,, = 

E - 0.5). (a) Shellside fluid. fbl Tuheside fluid. “,, - \ 

FIG. 3. Exit responses to a shellside ramp inlet temperature 
change of l-4 heat exchanger with tubeside flow arrangement 
I (E,, = E,* = E,~ = E,~ = 0.25, E*, = sz2 = &23 = &Z4 = 0.25, 
E,, = 602 = $3 = EC4 = 0.25, E,, = FW~ = E,~ = E,,,~ = 0.25). 

(a) Shellside fluid. (b) Tubeside fluid. 

the core wall as well as the exit responses to a given 
inlet temperature change according to equations (16), 
(19) and (20). 

EXAMPLES AND DISCUSSION 

In order to examine the method presented in this 
paper, the transient responses to the inlet temperature 
changes described in equation (11) of the heat exch- 
anger with parallel and countercurrent flow were com- 
puted and the same results as in ref. [3] were obtained. 
Under the following parameters that R, = 1.0, 
R, = 1.0, R, = 1.0, U, = U2 = 2NTU, and OL = 1.0, 
other examples of the exit transient behaviours have 
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FK. 4. Exit responses to a shellside exponential inlet tem- 
perature change of I 6 heat exchanger with tubeside flow 
arrangement 11 (E,, = I:,, = 0.2, i: , -’ = 6, j = c , j = i: R = 
0.15, G2, = i:34 = 0.2. i:?: -= c?; = Cj_ = i::h = O.LS. C// = 
&.d = 0.2. X,2 = CC> = i:,s = i:,,, = 0.15, i:,? = X,4 = 0.7, i&J = 
Z\, ; = I:,~ = E,~ = 0.15). (a) Shellside fluid. (b) Tubesidc fluid. 

FIG. 5. Exit responses to a shellsidc step inlet tempolaturc 
change of I -8 heat exchanger with tubeside flow arrangement 
I (::,,=::,,~~~‘-;:,,:0.125. ::,i=$:_z; ... zz(:;2*T 
0. 125. I:,, = ~1,: = = i:,, = 0.125. i:jb, _ i:,,: = = i:,\, = 

0.125). (a) Shellside fluid. (h) ‘Tubeside fluid. 

been calculated for shell-and-tube heat exchangers 
with more tubeside passes. both different tubeside 
flow arrangements and different distribution ratios of 
(/?A), as well as (hA),. The results are illustrated in 
Figs. 2-6. Meanwhile, the results have shown that 
the energy balance between both fluids is precisely 
satisfied in the steady-state for the step inlet tem- 
perature change, which demonstrates that the algo- 
rithm for numerical inverse Laplace transform can 
be applied for predicting the transient behaviour of 
multipass heat exchangers. The comparison for such 
cases is not possible because no data are available in 
the literature. 

The computation has shown that for both tubcside 
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flow arrangemens. almost the same exit responses 
appear if the number N of tubeside passes is greater 
than or equal to 6 (N 2 6). This phenomenon is simi- 
lar to the relationship between multipass shell- 
and-tube and transversety mixed cross-flow heat cx- 
changers in the stationary state for a higher number of 
tubesidc passes. As shown in these figures, no immcdi- 
ate exit behaviours respond to any sudden changes 
taking place at the inlets and there exist time lags 
between the inlet and exit changes to some cxtcnt 
because of the influence of thermal capacities of both 
fluids and the core wall. This kind of lag lasts some 
time within r < I.0 if the inlet temperature change 
occurs only on the shellside. Within this time lag, there 
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Generally, the optimum value of M for the inverse 
transform lies in the range 8 < A4 ,< 20. The inlet tern: 

perature changes can take arbitrary forms except for 
the prerequisites that they have no discontinuities or 
rapid oscillations. 

As shown in Fig. 6 and pointed out by Jacquot et 
al. [6], one may not find the accurate responses to a 
high frequency sinusoidal inlet temperature change 
for a greater value of the dimensionless time. In fact, 

the calculated exit response to such a sinusoidal change 
approaches zero by means of the Gaver-Stehfest 
algorithm if z > 100. Obviously, this is physically 

false. This means that the above-mentioned algorithm 

does not work well for inlet temperature changes 
which have rapid oscillatory components. t%%i 

0.0 2.0 4.0 6.0 6.0 . 

CONCLUSIONS 

The method of numerical inverse Laplace trans- 
form has been successfully applied to describe the 
transient behaviour of multipass shell-and-tube heat 
exchangers with different tubeside flow arrangements 
and changeable distribution ratios of (/IA), as well as 
(/zA)~. Arbitrary inlet temperature changes are 
allowed to take place on either side or simultaneously 
on both sides. 

Owing to the influence of thermal capacities of flu- 
ids and the core wall, there appears to be a time lag be- 
ween the inlet temperature changes and exit responses. 
The span of this time lag depends on other factors 
such as the tubeside flow arrangement and NTU 
values, besides the thermal capacities of fluids and the 

core wall. Within this lag, there may occur numerical 
vibrations which can easily be distinguished and elim- 
inated according to the characteristics of the transient 

behaviours of apparatuses. One has to select an appro- 
priate value of M of the summed series terms for the 
numerical inverse transform. The optimum M lies in 
the range 8 d M ,< 20. One should be careful when 
applying the Gaver-Stehfest algorithm to calculating 
the exit responses to oscillatory inlet changes. 
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FIG. 6. Exit responses to a shellside sinusoidal inlet tem- 
perature change of l-3 heat exchanger with tubeside flow 
arrangement I (s,, = aI3 = 0.4, EIZ = 0.2, .sZ, = a>, = 0.4, 
ez2 = 0.2, E,, = 0.38, E,~ = 0.25, E,~ = 0.37, E,, = 0.35, 
E,,,? = 0.3, E,,~ = 0.35). (a) Shellside fluid. (b) Tubeside fluid. 
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COMPORTEMENT VARIABLE DES ECHANGEURS THERMIQUES MULTIPASSES 
TUBE-CALANDRE 

R&urn&On developpe une methode pour prtdire les reponses variables a des changemcnts arbitraires de 
temperature a l’entrte des echangeurs thermiyues multipasses tube-calandre avec un nombre arbitraire de 
passes cbte tube. Les aires des surfaces cbte tube et tote calandre ainsi que les coefficients de transfert 
thermique sont supposes differents d’une passe a l’autre. Les capacites thermiques des fluides ct de la paroi 
sont incluses. On considere les arrangements possibles d’i-coulement. Les changements de temperature 
d’entree peuvent prendre place sur chaque cot& ou simultantment sur les deux cot&s. Cbneralement, la 
valeur optimale M de la somme des termes de la serie pour la transform&e inverse numerique dc Laplace 

tombe dans le domaine 8 < 44 < 20. 

INSTATIONARES VERHALTEN VON MEHRCANGIGEN 
ROHRBUNDELWARMEUBERTRAGERN 

Zusammenfassung-Es wird eine Methode zur Berechnung des instationiren Verhaltens von mehrgangigen 
Rohrbiindelwarmeiibertragern bei beliebiger Anderung der Eintrittstemperaturen entwickelt. Die Anzahl 
der rohrseitigen Durchgange darf beliebig scin. Die Fhichen und sowohl die inneren als such die HuBeren 
Warmeiibergangskoeffizienten der einzelnen Durchginge dtirfen sich unterscheiden. Die Warmekapa- 
zitaten von beiden Fluiden und der Wand werden beriicksichtigt. Beide miiglichen Schaltungsarten wcrden 
betrachtet. Es diirfen sich beide Eintritts-temperaturen einzeln oder gleichzeitig Cndern. Die Zahl M der 

Summanden bei der numerischen Laplace-Riicktransformation liegt im Bereich 8 < .&! < 20. 

HECTAHROHAPHbIE XAPAKTEPHCTMKH MHOI-OXOflOBbIX KOmYXOTPYEHbIX 
TEHJIOQBMEHHHKOB 

kIOTaWW-Pa3pa6OTaH MeTOn Oll~~C~eHHSl HCCTaItAOHapHO~O OTKJIHKa Ha npOH3BOJ“bHbIe 113MeHe- 

HEfR TeMnepaTflbl Ha BXOAC MHOl-OXOAOBbIX ICO~yxOTpy6~b1x TenJlOQEiMeHHHKOFJ c npOH3BOJIbHbIM 

KOnIlYeCTBOMXO~OBTpy6.nnOul~a nOBeepXHOCTeii rpy6a KOXYXOB, aTaKlge KOY&#M~UeHTbi Tennone- 

~~a'ikiEi3M&HIIEOTCII OT XOAa KIOOJQ'.YS~T~IB~~OTCIIT~IL~TO~MKOCT~ ~tiAI(OCTHU CTeHKH.kiCCJleAyIoTCK 

ABe B03MOmHbIe CTpj'KT)'pbl TeYeHBII,COOTBeTCTB~IIJHe CJQ"JaKM,KOrJ,a TeMnepaT,'pa Ha BXOAe MOKRT 

B3MeHIITbCR KaK C OnHOii CTO~HbI,TaK El 0,JHOBpeMeHHO c 06eEiX.KaK ~aBEiJIO,OnTHMaJIbHOC 3HaW- 

HUe hfCYMMbI'iJ%HOBpRAaIIpEi 4HCJIeHHOM 06paTHOM npCO6pa3oBaHUUnannaCaH3MCHneTCn BASiaIla- 

3oHe 8 < M < 20. 


