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Abstract—A method for predicting the transient responses to arbitrary inlet temperature changes of
multipass shell-and-tube heat exchangers with arbitrary number of tubeside passes is developed. The
tubeside as well as shellside surface areas and heat transfer coefficients are allowed to be different from
pass to pass. The thermal capacities of both fluids and the wall are included. Both possible flow arrangements
are considered. The inlet temperature changes may take place on either side or simultaneously on both
sides. Generally, the optimum value of M of the summed series terms for the numerical inverse Laplace

transform falls in the range 8 < M < 20.

INTRODUCTION

THE TRANSIENT operation of heat exchangers is of
increasing interest in industry and research, either for
process control applications or for the determination
of average heat transfer coefficients in heat exchan-
gers. There exist many references on the dynamic
response of shell-and-tube heat exchangers. Most of
them, however, focus on the transient behaviour of
paraliel flow or counterflow heat exchangers. In other
words, one can find few research papers which deal
with the dynamic process of shell-and-tube heat exch-
angers with more than one tubeside pass, although
such apparatuses are extensively used in industry.
Roppo and Ganic [1] as well as Correa and Marchetti
[2] applied the cell model to describe dynamic
responses to a step inlet change of multipass shell-
and-tube heat exchangers. The first paper neglects the
influence of the thermal capacity of the core wall and
the latter considers this influence, introducing an equi-
valent tubeside specific heat capacity. The essence of
both papers 1s the application of the finite difference
method.

On the basis of the previous work [3], this paper
analyses the transient behaviour of shell-and-tube
heat exchangers with N tubeside passes (designated as
1— N} and two different tubeside flow arrangements. It
is allowed that the tubeside and shellside heat transfer
coefficients as well as surface areas vary from pass to
pass and that arbitrary inlet temperature changes
(with the exception of discontinuities and rapid oscil-
lations) occur on either side or simultaneously on both
sides.

T Dedicated to Professor Dr.-Ing. Dr.-Ingeh. Ulrich
Grigull.
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DEVELOPMENT OF THE GOVERNING
EQUATIONS

The shell-and-tube heat exchanger under con-
sideration is illustrated schematically in Fig. 1 where
the number N of tubeside passes is arbitrary (even or
odd) and two possible tubeside flow arrangements are
presented. To simplify the derivation of the governing
equations, the following assumptions are necessary :

1. The thermal fow rates W, and W, of the fluids
are constant throughout and the heat transfer
coefficient is constant within any tubeside pass, but it
may vary with the tubeside pass.

2. The shellside fluid is completely mixed at any
cross-section of its nominal flow path and no bypass-
ing occurs.

3. All thermal properties are constant.

4. Longitudinal heat conduction within the wall
is neglected and the wall heat transfer resistance is
negligible compared with convective heat transfer
resistances.

5. No heat is transferred from the shell of the ex-
changer to the environment and there exists no in-
fluence of the thermal capacity of the shell on the
transient process.

To develop a general coordinate system, the origin
of the coordinate is always set at the location where
the shellside fluid enters the heat exchanger. Accord-
ing to the above idealizations, one can derive the
(2N + 1) partial differential equations which describe
the transient behaviour of 1~ A shell-and-tube heat

exchangers
,, Oty at l
Wiz +C 73-;‘» +,§, hAy it —1.) =0 (1)
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NOMENCLATURE

A heat transfer surface area [m] Greek symbols
C heat capacity [J K~ 7} 3 parameter in equation (11)
Fi(2), f5(z)  inlet temperature changes it temperature {K]
F (s}, Fo(s) transformed forms of /(=) and iR initial temperature in heat exchangers [K]
f+(z) in the image domain o, reference temperature [K]
h heat transfer coefficient [Wm 2K '] A cigenvalues
/ distance from the entrance of shellside T time {s]
fluid [m} T, residence time of fluid in the heat
L length of the heat exchanger {m] exchanger [s].
M number of summed series terms in
equation {21)
N number of tubeside passes Subscripts
NTU number of transfer units [dimensionless} 1 shellside fluid
s paramcter of the Laplace transform 2 tubeside fluid
t dimensionless temperature, e exit
t= (0—0)/(0.~0y W core wall of the heat exchanger.
T transformed form of 7 in the Laplace
transform domain
W thermal flow rate [WK ] Superscripts
X dimensionless coordinate, v = [/ L inlet
= dimensionless time i exit.
W, N 9’1 ws * 3’1
W, =1 W | g
eqz e‘! =2
W2 Wz
g, . oA
AANY i, o4 '
- x ¥ €1 7 even - x e 817 dd
(a) tubeside flow arrangement I
W,, R 9’1 ws N
W, =1 W, =1
g, =2 -4 =2
(r-—-—cl —————— :
Wi, | T )} Wa
a7 o
2 i i
W,, ©f N ! ‘kh A N
b x "7 even X odd

(b) tubeside flow arrangement I

FiG. 1. Schematic representation of multipass shell-and-tube heat exchangers.
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+(hA)2i([2i_{wi)=0 (l_’: 1$29~"9N) (2)
Cwiaéyi —(hAY{t ~ t)
(&8

“(;?A)Zi(zm—zwi):o (;: 1,2,...,N} (3)

where the positive sign (+) and negative sign (—) of
(£) in equation (2) are valid for the tubeside flow
arrangements I and II which are shown in Fig. 1,
respectively. For an incompressible fluid, it must be
satisfied that W,, = W,, i.c,, the tubeside thermal flow
rate does not vary with the pass. However, the tube-
side thermal capacity C,; may be different from pass
to pass. The residence times t,; and 1,, of both fluids
and some dimensionless parameters are introduced

B © . <
ri W{ s 12 W2 s r2i WZL,"
R :E/_‘._.J_ U =.(.h..’9l :(hA)z
i WZ R2 3 1 Wl 3 2 Wz s
(hd)y; (hA)
Uiz"‘-.i, U(‘—‘“’““‘”’“
H Wl 2 Wz
NTU »—[ R ]'I—-l—m Uil
YLy, T (hd),] W, U +UR,
_GA)y, Uy )y Uy
SR TR T OV P P
Gy _C
) C-2 3 wi T Cw

where

N N
(hA), = ), (hA)y, (hA)2 = Y, (hA)y,
=1 i=
N N
C,=3Y Cy and C,= Y C,.
fe= f i=1
Obviously, we have the following relationships :

N N N
23“:1; 2821':15 chi"'"l,
i= 1 i=1 i=1

and Tezr = &giTya (4)
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C C
R = = 3 Rwi ''''''' - _8wiRw
YOG+ C+C;
. UU o, = D’Zi
MTTER, YT RO+RY)
sign = +(~— D"

The dimensionless time variable z is introduced as

Zz—t-:. (5)

By means of the above dimensionless variable and
parameters, equations {1)—(3) can be rewritten as fol-
lows:

ot, o1, XN

L) {t—te) =

I + P +2:I Uity —t.,) =0 (6)
. (’7{2; a{Zi =
s1gn 'é"X“ + 8 R, 7z + Uty 1) =0

(i=12%....,N) (D

Ot s
Rwi_éj =8yt = twi) =g (t gLy} = 0

LN ®)

These dimensionless partial differential equations are
subject to the following initial conditions:

f‘(x,()) =0, !Zi(xs 0) = wi(xa 0) =0

(=1,2...,N). (9

The shellside arbitrary inlet temperature change can
be described as

1,(0,2) = 11(2) (10)

and the other N boundary and interface conditions
pertinent to the tubeside flow are listed in Table 1.
They vary with the number of tubeside passes and
flow arrangements.

Functions f1(z) and f,(z) describe any possible inlet
temperature changes on both sides of multipass shell-
and-tube heat exchangers, which may occur sep-
arately or simultaneously. The most common forms
of such changes may assume step, ramp, exponential
or periodic expressions

Table 1. The boundary and interface conditions for #,,(x, z)

Tubeside flow arrangement

x=0, z=20 x=1, z20 1 11
Neven By = boppy = L3554y Iy =ty = i n(0, 2) = folz) 1240, 5y = f2(2)
i=24,... ,N-2 i=1,3,..., N~1
N odd 1= o1 = Inisy Iy = o4y = Loy tan(l 2) = £52(2) 120, z) = fr(2)

i=24,..,N-1

i=13,...,N=-2
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! step
fior fafzy = 4 2 ramp

exp(~oz) cxponential

sin (2z) periodic

(1)

where % is a known parameter.

TRANSIENT RESPONSES

To obtain the transient responses to the given inlet
temperature changes, the solution to equations (6)-
(8) must be derived. For this purpose, one can take
advantage of the Laplace transform of these equations
using s as the Laplace parameter with respect to :.
According to the given initial conditions, the trans-
formed equations are as follows:

dT, & Uie2y;
— = —| S+ U, - e
dx ( + ! ,‘21 R\~':‘Y+ali+12: :
N T
U\ es05
+ e T (12
,; Rys—+oy+as ™ )
d7,, . Usenoy;
- =g} i O
dy ~ M R s s
Tsi U0 R U T
si e e = R —Uses | T,
gn Rw,'S+OC1,+3(3, i XS 282 20
(i=12.....N) (13)
s, Ty 4oy Ty .
T, =—- i =1,2 N 14
Ryis+a+ % ( ) (19

With the corresponding interface and boundary con-
ditions, equations (12) and (13) compose a closed
system consisting of (V+1) homogeneous ordinary
differential equations of the first order. In matrix
notation, this homogeneous system can be expressed
in the form

a1 _

— = AT
dx

(15)
where T = (T2, T21,....Tox, T))' and A is an
(N+ 1) x (N + 1) matrix, the elements of which are as
follows:

0 =y
: Useoity
sign | - T )
dy = 8 Ryis 4oty + o, LjsSN
—e i R.s— szzz,> (=]
U,eq0y,
;o = SIEN oo e =1,2,....N
e & RS+ o+ oy
U,y .
Ans1; =5 a2 . =12, N

Rys+x oy

and Y. XuanN

Y Uye oy,
= U S
Uy invi (s+ I)+.¢Z| Rosto, +om
In the light of the similar procedure described in ref.
{4]. a general solution to the system (15) is derived as
N+
T= Y dBexpiix)

/!

{(16)

where 2, and B, (j = 1.2..... N+ 1) are distinct cigen-
values and the corresponding eigenvectors. respece-
tively, B, = (b, hay. ... by, 1) Generally. the
eigenvalues are different from each other. If there exist
multiple eigenvalues, the solution (16) may fail. In
this case one should refer to the literature [4]. To
obtain the particular solution subject to the given
interface and boundary conditions, (V4 [) unknown
coefficients 4, (j=1.2,....N+1) must be deter-
mined. From equation (16) and the given conditions,
one can find a matrix equation which confines these
coefficients

WD = G (17)

where D= (d,, d5,..., dy, 1) and G = (0.0, ....0.
Fy(s), Fi(s))7, if the inlet boundary conditions on both
sides are taken as the last two equations. W is an
(N+ 1) x (N+1) matrix whose clements depend on
many factors such as the number of tubeside passes.
the tubeside flow arrangement and the multiplicity of
eigenvalues 7,. Consequently, the coefficient vector D
is obtained

D=W 'G. (18)

On determining the coefficients d; in equalion (16).

one has found the particular solution subject to the

given conditions in the image domain of the Laplacc

transform. In this domain, the exit transient response

T,. of the shellside flow is drawn from equation (16}
Vot

Tlc = Z d/wa‘-l./exp (//)

j=1

(19)

and the tubeside exit response T, varies with the
tubeside flow arrangement and the number N of tube-
side passes. For the tubeside flow arrangement 1

N

T=T, = Z d:b,,. (20a)
el
For the tubeside flow arrangement Il
N=]
Y diby, cven N
Toe=Ton< /=" (20b)
N+
Y dbyexp(4;) odd N.

j=1

Obviously. d,, B, and A, may all be functions of the
Laplace parameter s. [t is impossible to perform the
inverse transform of the above mentioned expressions
analytically. A numerical inverse Laplace transform
is used to derive the transient responses to the inlet
temperature changes in the time domain. This numeri-
cal inversion method, called the Gaver—Stehfest
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algorithm [5], can be described by the following

expressions :
In2 ¥ In2
fey=—1% KiF(‘:“l)
Z i z

min (i, M]2}
Ki — (_1)5+M}2 Z

k=(+1)/2

M2 (k)

% (MPR2=k) K\ (k—1D)! (i—k)! 2k—)! @D
where M must be even. The word ‘min’ means that
the number of summed series terms takes the lower of
{and M/2.

By means of the expression (21}, one can obtain the
transient temperature profiles of both fluids and of

1.0

t -
tegg. NTU{=0.1

0.8+

0.3

0.7+

0.6+

0.5-
0.4-
0.3-
0.2-

0.1

(a) shellside fluid

1.0

t
2e 0.9
0.8<

0.7+

(b) tubeside fluid

FiG. 2. Exit responses to a shellside step inlet temperature

change of 1-2 heat exchanger with tubeside flow arrangement

I (611 =¢63=05, g, =¢6,2=035, & =¢6,=05, ¢, =
.2 = 0.5). (a) Shellside fluid. (b) Tubeside fluid.
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the core wall as well as the exit responses to a given
inlet temperature change according to equations (16),
(19) and (20).

EXAMPLES AND DiSCUSSION

In order to examine the method presented in this
paper, the transient responses to the inlet temperature
changes described in equation (11) of the heat exch-
anger with parallel and countercurrent flow were com-
puted and the same results as in ref. [3] were obtained.
Under the following parameters that R, = 1.0,
R =10,R, =10, U =U,=2NTU, and a = 1.0,
other examples of the exit transient behaviours have

10.0

(a) shellside fluid

(b) tubeside fluid

F1G. 3. Exit responses to a shellside ramp inlet temperature

change of 1-4 heat exchanger with tubeside flow arrangement

Tn =28 =¢e13=614=0.25, 85, = £33 = £33 = &34 = 0.25,

By = &y = B3 = By = 0'25’ Byl = Byy = 8y3 = By = 025)‘
(a) Shellside fluid. (b) Tubeside fluid.
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0.6
t1e §
0.5
0.4
0.3
0.2
0.13
0.0 y .
0. 100 12.0
z
(a) shellside fluid
0.3
t2e ]
0.2
] 4.0
AL
0.1
7 0.5
] 0.3
] NTU;=0.1
00—
0O 20 40 60 B8O 100 120
z

(b) tubeside fluid

FiG. 4. Exit responses to a shellside exponential inlet tem-
perature change of 16 heat exchanger with tubeside flow
artangement [l (g, =¢,, = 0.2,
015, £y =853 =02, fi3nm 83y = 85 = 824 = 015, o, =
g =02, b0 =85 = 85 = & —015 “,Ar“d_() 2, G =
Sy T Bes = &y = .15). {a) Shellside fluid. (b) Tubeside fluid.

By =8y T8 s Tl =

been calculated for shell-and-tube heat exchangers
with more tubeside passes, both different tubeside
flow arrangements and different distribution ratios of
(hA), as well as (hA4),. The results are illustrated in
Figs. 2-6. Meanwhile, the results have shown that
the energy balance between both fluids is precisely
satisfied in the steady-state for the step inlet tem-
perature change, which demonstrates that the algo-
rithm for numerical inverse Laplace transform can
be applied for predicting the transient behaviour of
multipass heat exchangers. The comparison for such
cases is not possible because no data are available in
the literature.

The computation has shown that for both tubeside
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1.0

t
legg

0.8
0.7+
0.6~
0.5
0.4-
0.3
0.2-

0.1+

0.0

{a) shellside fluid

1.0

Zeqg-
0.8

0.7-

(b) wbeside fluid

Fi6. 3. Exit responses to a shellside step inlet temperature
change of 1--8 heat exchanger with tubeside flow arrangement
I (g, =0= " =0,=0125 &) == =gy=
0.125. &, «fﬂx c= gy = 001250 &y, = oiyn =
0.125). (a) ‘Shcll&de fluid. {b) Tubeside ﬁuld

flow arrangemens, almost the same cxit responses
appear if the number N of tubeside passes is greater
than or cqual to 6 (N = 6). This phenomenon is simi-
lar to the relationship between multipass shell-
and-tube and transversely mixed cross-flow heat ex-
changers in the stationary state for a higher number of
tubeside passes. As shown in these figures, no immedi-
ate exit behaviours respond to any sudden changes
taking place at the inlets and there exist time lags
between the inlet and exit changes to some cxtent
because of the influence of thermal capacities of both
fluids and the core wall. This kind of lag lasts some
time within 7 € 1.0 if the inlet temperature change
occurs only on the shellside. Within this time lag, there
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1.0

Te 8-
0.6-
0.4
0.2-
0.0-

—0.2-

—0.4-

—0.6-
—0.8-

-1.0 T T T T T T LI | T T T

0.0 2.0 4.0 6.0 8.0 10.0 12.0
z
(a) shellside fluid

0.6
T2e 0.5

0.4
0.3-
0.2-
0.1
0.0-

-0.14

-0.2-

~0.34

~0.4-

—0.5]

-06f——F—T—F——F—T—7———

0.0 2.0 4.0 6.0 8.0

(b) tubeside fluid

FiG. 6. Exit responses to a shellside sinusoidal inlet tem-
perature change of 1-3 heat exchanger with tubeside flow
arrangement [ (g, =¢,;, =04, £,,=02, ¢;, =5, =04,
£y =02, g, =038, &,=025 &,=037, &, =035,
&40 = 0.3, &,; = 0.35). (a) Shellside fluid. (b) Tubeside fluid.

may appear minor vibrations of the computed results
of the exit temperature responses and one needs to pay
attention to these results. The reason is that greater
round-off errors may arise within the time lag. Since
there should exist no exit responses within this time
lag, in fact, it is easy to distinguish and eliminate these
numerical vibrations.

As pointed out in ref. [3], one should not expect to
find an optimum value of M of the summed series
terms which is suitable for all cases. The optimum value
of M may vary with the inlet temperature changes,
the number N of tubeside passes, flow arrangements
and some other factors. A method how to determine
an appropriate value of M has been discussed [3].
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Generally, the optimum value of M for the inverse
transform lies in the range 8 < M < 20. The inlet tem-
perature changes can take arbitrary forms except for
the prerequisites that they have no discontinuities or
rapid oscillations.

As shown in Fig. 6 and pointed out by Jacquot e?
al. [6], one may not find the accurate responses to a
high frequency sinusoidal inlet temperature change
for a greater value of the dimensionless time. In fact,
the calculated exit response to such a sinusoidal change
approaches zero by means of the Gaver—Stehfest
algorithm if z > 100. Obviously, this is physically
false. This means that the above-mentioned algorithm
does not work well for inlet temperature changes
which have rapid oscillatory components.

CONCLUSIONS

The method of numerical inverse Laplace trans-
form has been successfully applied to describe the
transient behaviour of multipass shell-and-tube heat
exchangers with different tubeside flow arrangements
and changeable distribution ratios of (h4), as well as
(hA),. Arbitrary inlet temperature changes are
allowed to take place on either side or simultaneously
on both sides.

Owing to the influence of thermal capacities of flu-
ids and the core wall, there appears to be a time lag be-
ween the inlet temperature changes and exit responses.
The span of this time lag depends on other factors
such as the tubeside flow arrangement and NTU
values, besides the thermal capacities of fluids and the
core wall. Within this lag, there may occur numerical
vibrations which can easily be distinguished and elim-
inated according to the characteristics of the transient
behaviours of apparatuses. One has to select an appro-
priate value of M of the summed series terms for the
numerical inverse transform. The optimum M lies in
the range 8 < M < 20. One should be careful when
applying the Gaver—Stehfest algorithm to calculating
the exit responses to oscillatory inlet changes.
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COMPORTEMENT VARIABLE DES ECHANGEURS THERMIQUES MULTIPASSES
TUBE-CALANDRE

Résumé—On développe une méthode pour prédire les réponses variables a des changements arbitraires de
température a 'entrée des échangeurs thermiques multipasses tube-calandre avec un nombre arbitraire de
passes cOté tube. Les aires des surfaces cOté tube et ¢oté calandre ainsi que les coefficients de transfert
thermique sont supposés différents d’une passe a 'autre. Les capacités thermiques des fluides et de la paroi
sont incluses. On considére les arrangements possibles d’écoulement. Les changements de température
d’entrée peuvent prendre place sur chaque c6té ou simultanément sur Jes deux cotés. Généralement, la
valeur optimale M de la somme des termes de la série pour la transformée inverse numérique de Laplace
tombe dans le domaine 8 < M < 20.

INSTATIONARES VERHALTEN VON MEHRGANGIGEN
ROHRBUNDELWARMEUBERTRAGERN

Zusammenfassung—Es wird eine Methode zur Berechnung des instationédren Verhaltens von mehrgingigen
Rohrbiindelwirmeiibertragern bei belicbiger Anderung der Eintrittstemperaturen entwickelt. Die Anzahl
der rohrseitigen Durchginge darf beliebig sein. Die Flichen und sowohl die inneren als auch die duBBeren
Wirmeiibergangskoeffizienten der einzelnen Durchginge diirfen sich unterscheiden. Dic Wirmekapa-
zititen von beiden Fluiden und der Wand werden beriicksichtigt. Beide mdglichen Schaltungsarten werden
betrachtet. Es diirfen sich beide Eintritts-temperaturen einzeln oder gleichzeitig dndern. Die Zahl M der
Summanden bei der numerischen Laplace-Riicktransformation liegt im Bereich 8 < M < 20.

HECTAIIMOHAPHBIE XAPAKTEPUCTHUKH MHOT'OXOJOBbBIX KOXYXOTPYBHbBIX
TEITIJIOOEMEHHUKOB

Amsorammst—Pa3paboTan MeTOx ONpenelicHUsl HECTALMOHAPHOIO OTKJIMKA HA TIPOM3BOJILHBIC U3MEHE-
HHS TeMIEPaTyphl HA BXOAE MHOIrOXOHOBBIX KOXYXOTPYGHBIX TEIJIOOOMEHHHKOB € MPOH3BOJLHBEIM
KOJIM4ECTBOM X0AOR Tpy6. ILnomiaan nosepxuocteil Tpy6 u KOXYx0B, a Takke K03hPHIMEHTEI TeIUIONE-
penadyy H3MEHSIIOTCA OT X042 K I001y. YUATHIBAIOTCA TEILIOEMKOCTH XKHIKOCTH M cTeHku. Mccnenyrores
[IBE BO3MOXHBIE CTPYKTYPBI TEUeHHsl, COOTBETCTBYIOLIME CIIy4asiM, KOTAa TEMNEPaTypa Ha BXOJE MOXET
H3MEHATHCH Kak C OJHOH CTOPOHBI, Tak B OJHOBpeMeHHO ¢ oOenx. Kak mpaBuiio, oNTHMaNBHOE 3HaYe-
HHE M CyMMBbI WIEHOB pAAA NpH YKCIEHHOM 0GpaTHOM NpeoOpa3opannn Jlamnaca u3MenseTcs B auana-
3oHe 8§ <€ M < 20.



